Structural Transformation in Nb₂O₅-Promoted Rh Catalysts during Calcination and Reduction Treatments

Z. Hu, H. Nakamura, K. Kunimori, Y. Yokoyama, H. Asano, M. Soma, and T. Uchijima

Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan, and *National Institute for Environmental Studies, Tsukuba, Ibaraki 305, Japan

Received November 30, 1988; revised March 1, 1989

The extent of Rh-Nb₂O₅ interaction in the niobia-promoted Rh/SiO₂ catalyst depends on parameters such as calcination temperature. For the Nb₂O₅-promoted Rh/SiO₂ catalyst with the Nb/Rh atomic ratio of unity, no significant SMSI effects were observed after air calcination at 773 K. However, this catalyst exhibits significant SMSI behaviors after calcination at higher temperatures (973 and 1173 K). After high-temperature reduction at 773 K, the capacity of H₂ chemisorption typically diminished almost to zero and the catalytic activity for ethane hydrogenolysis was suppressed by ca. 3.5 orders of magnitude compared with that after low-temperature reduction at 373 K. X-ray diffraction showed that the RhNbO₄ compound was formed, with the amount increasing with increasing calcination temperature. After air calcination at 1173 K, the RhNbO₄ compound was formed almost exclusively on the SiO₂ surface. The RhNbO₄ compound was reduced to Rh and NbO₂ during HTR treatment at 773 K, accompanied by splitting of the large RhNbO₄ particle into a number of smaller Rh particles. The mechanism of Rh-Nb₂O₅ interaction is discussed. It is proposed that the NbO₂ species formed during the HTR treatment block surface Rh atoms to induce strong Rh-Nb₂O₅ interaction (SMSI). © 1989 Academic Press, Inc.

INTRODUCTION

There has been much interest in the strong metal-support interaction (SMSI) as well as in the effect of oxide promoter in supported metal catalysts (1-6). The metal-oxide interaction modifies the catalytic properties of the metal significantly (7-11). Evidence for a strong metal-support interaction has been observed in TiO₂promoted Rh catalysts (12) and in Nb₂O₅promoted Ni catalyst (13). Such oxide promoters have also been reported to modify substantially the catalytic properties of the metal (5-7). Kunimori *et al.* reported that a Nb₂O₅-promoted Rh/SiO₂ catalyst exhibited SMSI behavior in ethane hydrogenolysis reaction, the Rh-Nb₂O₅ interaction being as strong as that in the Rh/Nb₂O₅ catalysts (14). The results show that metal-support and metal-oxide promoter interactions are quite similar.

Metal-oxide interaction was discovered many years ago, and the early literature has been reviewed by Solymosi and Schwab (15, 16). Tauster and co-workers first reported SMSI phenomena (17, 18). This work has led to numerous studies on the interesting properties of many transition metals supported on reducible oxides. The studies have enhanced our understanding of the mechanism of the strong metal-support interaction (19-29). In a current model of SMSI, a reduced oxide species is formed during high-temperature reduction (HTR) and then blocks surface metal atoms, leading to a suppression in the capacity of H₂ chemisorption and in the catalytic activity for ethane hydrogenolysis reaction ("decoration model") (20, 30). However, the structure of the reduced oxide species and their interaction with metal still remain unclear.

¹ To whom correspondence should be addressed.

² Present address: Corporate Research and Development Laboratory, Toa Nenryo Kogyo K. K., Ohimachi, Iruma, Saitama 354, Japan.

The term "SMSI behavior" is used in this paper for the cases which meet the definition in the original observations (17, 18), i.e., a drastic suppression of chemisorption ability and/or catalytic activity after hightemperature reduction and its recovery after high-temperature O₂ treatment followed by low-temperature reduction (LTR). SMSI behavior has been amply confirmed in the originally reported catalyst systems (metal/TiO₂, metal/Nb₂O₅, etc.), and new catalyst systems (TiO₂-, V₂O₃-, and Nb₂O₅promoted metal catalysts) have been observed to exhibit equivalent behavior (4, 12, 13, 29). Because the amount of the reducible oxide is significantly smaller in the latter catalyst systems, we may be able to obtain clearer information about the structure of the oxide which interacts strongly with metal. For the promoted metal catalysts, mixed oxide may be formed between metal and oxide promoter. This chemistry will affect the degree of metal-oxide interaction. Formation of the RhVO₄ mixed oxide has been proposed in V₂O₅-promoted Rh catalysts by Kip et al. (31). They found that vanadium oxide hampers the reduction of rhodium oxide in Rh/V₂O₅/SiO₂ catalysts, which do not contain "free" V₂O₅ when the ratio of V/Rh is 0.9. In the preceding papers (32, 33), we have found a formation of RhNbO₄ as a new phase by X-ray diffraction during calcination of the Nb₂O₅-promoted Rh/SiO₂ catalyst. It has also been suggested that the Nb₂O₅ on the SiO₂ surface migrates toward the rhodium particle during the calcination process to form the RhNbO₄ compound. Such Nb₂O₅ RhNbO₄ is reduced during high-temperature reduction, and spreads on the surface of Rh particles, leading to the suppression of H₂ chemisorption capacity and ethane hydrogenolysis activity. Significant SMSI effects have been observed in the Nb₂O₅promoted 0.5% Rh/SiO₂ (Nb/Rh = 9.3) and Nb_2O_5 -promoted 5% Rh/SiO_2 (Nb/Rh =3.1) catalysts (32). Because these catalysts contain an excess amount of Nb₂O₅ promoter, a large part of which does not inter-

act directly with rhodium, little information about the structure of reduced niobia species and its interaction with Rh have been obtained so far. Thus, an attempt to use a Nb₂O₅-promoted Rh/SiO₂ catalysts with the Nb/Rh atomic ratio of unity might help us to understand in detail the migration and reduction behavior of rhodium and niobia promoter on the silica surface.

In this paper, the results of our recent work using Nb₂O₅-promoted Rh catalysts (Nb/Rh = 1.0) and RhNbO₄/SiO₂ catalysts as starting materials will be presented. TPR, TPO, and XPS experiments were carried out to characterize the Rh-Nb₂O₅ interaction. The structure change of the catalyst was studied by X-ray diffraction. The catalytic properties and the characterization results will be described first, followed by a discussion of the mechanism of Rh-Nb₂O₅ interaction and the structure of the reduced niobia species in the SMSI state.

EXPERIMENTAL

Preparation of catalyst. A silica of Japan reference catalyst (JRC-SIO-3, BET surface area of 186 m²/g) was used as support (34). After calcination in air at 773 K, the SiO₂ support was impregnated with a mixed aqueous solution of RhCl₃ and (NH₄)₃ $[NbO(C_2O_4)_3]$, and then dried at 393 K overnight. Catalysts A and B were obtained by calcining this impregnated sample in air at 773 K for 1 h and at 973 K for 3 h. Rhodium content was 4.8 wt\%. For catalyst C, the SiO₂ support was precalcined in air at 1173 K for 3 h, to avoid possible structural change during the following high-temperature calcination. The BET surface area decreased to 40 m²/g. A 4.2 wt% Rh/SiO₂ catalyst was prepared by impregnation of the precalcined silica with a solution of RhCl₃, then dried at 393 K but not calcined. This impregnated with sample was then (NH₄)₃[NbO(C₂O₄)₃] dissolved in deionized water. Catalyst C was obtained by calcining this sample in air at 1173 K for 3 h after it had been dried at 393 K overnight. For all the catalysts, the Nb₂O₅ loading was chosen so that the atomic ratio of Nb/Rh is unity.

 H_2 chemisorption. Volumetric H_2 chemisorption was measured in a conventional glass vacuum system, as described in (35). The catalyst was pretreated in O_2 at 773 K for 1 h, followed by low-temperature reduction at 373 K or high-temperature reduction at 773 K in H_2 flow purified with a liquid nitrogen trap. Before the measurement of H_2 adsorption at room temperature, the catalyst was evacuated at the catalyst reduction temperature for 1 h.

 O_2 consumption. The O_2 consumption was studied in the same glass vacuum system. After the measurement of H_2 adsorption, the catalyst was evacuated at 773 K for 1 h to remove possible H_2 adsorbate on the catalyst. After the admission of O_2 , the catalyst was heated at 773 or 873 K. The O_2 uptake was instantaneous; it was followed by a gradual change, the rate of which became negligible after 1–2 h. Therefore, the amount of O_2 consumption was measured after being heated at 773 for 3 h or at 873 K for 1.5 h.

Ethane hydrogenolysis. The catalytic activity measurements for the ethane hydrogenolysis reaction were performed in a microcatalytic pulse reactor (36). The details of the procedure have been described elsewhere (32). The reaction was carried out after the catalyst was pretreated in O₂ at 673 K, followed by low-temperature reduction at 373 K or high-temperature reduction at 773 K.

X-ray diffraction (XRD). The XRD measurements were performed with an X-ray diffractometer (Rigaku Co. Ltd.) with a graphite monochromator for $CuK\alpha$ (40 kV, 30 mA) radiation. An on-line computer was used for data collection and processing, which made available the precise determination of d spacing values of diffraction lines. For normal measurements (continuous scan), slower scan speed (0.5°/min) was used. For step scan measurements, a scan step of 0.04° and a preset time of 20 s were employed.

X-ray photoelectron spectroscopy (XPS). XPS spectra were obtained using a VG ESCA LAB-5 spectrometer equipped with both Al $K\alpha$ and Mg $K\alpha$ X-ray sources, a preparation chamber, and signal averager (35). The signal of Si 2p at 103.3 eV was used as a standard for the evaluation of core-electron binding energies.

Temperature-programmed reduction (TPR). The TPR measurements were performed in a flow system with the catalyst (0.25 g) placed in a microreactor connected to a quadrupole mass spectrometer, as described previously (32). After the catalyst was calcined in O₂ flow at 773 K for 1 h, it was purged with He gas at 773 K to remove any possible oxygen adsorbate over the support. The catalyst was subsequently cooled in He to room temperature; then a mixture of 1.04% H₂-He was passed through the catalyst bed at 30 cm³/min, and the H₂ consumption was monitored as the catalyst temperature was raised at 5 K/min up to 973 K.

Temperature-programmed oxidation (TPO). TPO measurements were carried out in the same flow system. After the catalyst (0.25 g) was reduced at the desired temperture, it was purged with He purified at liquid nitrogen temperature by raising the temperature to 973 K to remove H₂ adsorbate on the catalyst. The sample was subsequently cooled in He to room temperature; then a mixture of 0.105% O₂-He was passed through the catalyst bed at 30 cm³/min, and the O₂ consumption was monitored as the catalyst temperature was raised at 10 K/min to 973 K.

RESULTS

The catalytic properties of the Nb₂O₅-promoted Rh catalysts are presented in Table 1. The fresh catalyst was first reduced in H₂ at 773 K (HTR) before any adsorption or activity measurements. As will be presented later, this first HTR treatment was performed to decompose the RhNbO₄ compound. It can thus be considered that the obtained chemisorption capacities and ac-

TABLE 1

Catalytic Properties of Nb₂O₅-Promoted Rh/SiO₂

Catalysts

Catalyst	H/Rha		Extent of	Rh particles ^c	
	LTR	HTR	activity suppression ^b	Mean size (Å)	Dispersion
Catalyst A	0.061	0.020	1	43	0.21
Catalyst B	0.053	0.003	$10^{-3.5}$	85	0.11
Catalyst C	0.130	0.004	$10^{-3.5}$	48	0.19

 $[^]a$ The fresh catalyst was first reduced in H $_2$ at 773 K (1st HTR) before the chemisorption and activity measurements. Chemisorption capacities were measured after high-temperature reduction at 773 K (HTR) and $\rm O_2$ treatment at 773 K followed by low-temperature reduction at 373 K (LTR).

tivities are the catalytic properties of the Rh particles. For catalyst A (calcined at 773 K), almost the same catalytic activities were observed after LTR at 373 K and HTR at 773 K. However, significant suppression effects were observed in catalysts B and C, which were calcined in air at higher temperatures (973 and 1173 K, respectively). After the O₂ treatment followed by LTR, the catalytic activity of catalyst B increased by ca. 3.5 orders of magnitude relative to that after the first HTR treatment. For catalyst C, the observed suppression extent was almost the same as that in catalyst B. The suppression was reversible. Following the first HTR treatment, the catalytic activity of catalyst C increased (by ca. 3.2 orders of magnitude) after the O₂ treatment at 673 K followed by LTR treatment. This activity decreased (by ca. 3.5 orders) again after the following HTR treatment. Almost the same suppression extents were observed after the first and second HTR treatments (39).

The results of H₂ chemisorption and XRD studies are also shown in Table 1. The H/Rh values from H₂ chemisorption measurements are less than those Rh dispersions obtained by X-ray diffraction. This result suggests that the Rh particles are partially covered with the Nb₂O₅ promoter

even after LTR, as reported previously (32). The mean size of Rh particles is different for the Nb₂O₅-promoted Rh catalysts calcined at different temperatures. The size is 43 Å for catalyst A. This size increased to 85 Å after the catalyst was calcined at higher temperature (catalyst B). However, the particle size decreased to 48 Å in catalyst C, even though the catalyst was calcined at much higher temperature (1173 K). It is interesting that the mean size of Rh particles of catalyst C is smaller than that of catalyst B.

The H₂ chemisorption capacity decreased with increasing catalyst reduction temperature. In catalyst A, substantial H₂ chemisorption (about one-third of the value after LTR at 373 K) was observed even after HTR at 773 K. However, the capacity of H₂ chemisorption diminished almost to zero in catalysts B and C. Apparently, the Nb₂O₅-promoted Rh catalysts more or less show the behaviors characteristic of SMSI phenomena in H₂ chemisorption and ethane hydrogenolysis reaction, because both the chemisorption capacities and the catalytic activities decrease with increasing catalyst reduction temperature. As suggested by the decoration model of SMSI, the suppression effects are due to the blockage of surface Rh atoms. It thus can be considered that in catalyst A only part of the Rh interacts with the niobia promoter, but almost all of the surface Rh atoms are blocked by the niobia promoter in catalysts B and C after HTR. The different extent of SMSI in catalysts A and B supports our previous conclusion that the extent of Rh-Nb₂O₅ interaction is increased by calcining the Nb₂O₅-promoted Rh catalyst in air at higher temperature (32).

In order to characterize the structure of rhodium and niobia promoter, X-ray diffraction patterns were recorded after the catalysts were treated in H₂ or O₂ at different temperatures. For catalyst A, which was calcined in air at 773 K, only a few broad diffraction peaks were observed, which can be attributed to Rh₂O₃ (Fig. 1,

^b The extent of activity suppression is given as a ratio of the catalytic activity for ethane hydrogenolysis after HTR treatment at 773 K to that after LTR treatment at 373 K ($r_{\rm HTR}/r_{\rm LTR}$).

^c The mean size and dispersion of Rh particles were obtained from X-ray diffraction of the catalyst reduced in H₂ at 773 K according to the Scherrer formula.

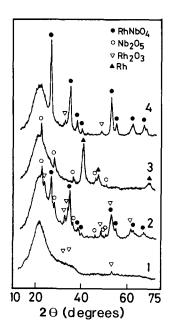


Fig. 1. X-ray diffraction patterns of Nb₂O₅-promoted Rh catalysts calcined at different temperatures. (1) Catalyst A (calcined in air at 773 K). (2) Catalyst B (calcined in air at 973 K). (3) Catalyst B after being reduced in H₂ at 773 K. (4) Catalyst B after being calcined in air at 1173 K.

No. 1). It suggests that Nb_2O_5 is dispersed well or amorphously. However, the diffraction pattern of catalyst B calcined at 973 K is more complex. As shown in Fig. 1 (No. 2), three phases (Rh₂O₃, Nb₂O₅, and RhNbO₄) are observed. A new phase of RhNbO₄ compound was formed between Rh and Nb₂O₅ promoter. The XRD pattern of catalyst B after H₂ reduction at 773 K is also presented in Fig. 1 (No. 3). The diffraction peaks of the Rh metal are observed with the disappearance of the RhNbO₄ phase. However, it should be noted that no reduction was observed in the intensities of the diffraction peaks of the Nb₂O₅ phase (Nos. 2 and 3).

Catalyst B was further calcined at a higher temperature (1173 K). The XRD pattern is shown in Fig. 1, No. 4. The intensities of the diffraction peaks of the RhNbO₄ compound increased substantially. At the same time, the diffraction peaks of the Nb₂O₅ phase disappeared in the XRD pat-

tern (No. 4), implying that a reaction occurred between rhodium and the niobia promoter:

$$Rh_2O_3 + Nb_2O_5 \rightarrow 2RhNbO_4$$

The Rietveld analysis of X-ray powder diffraction data was carried out in order to reconfirm the previous assignment (32). Figure 2 illustrates the profile fit and the difference patterns for catalyst B after calcination at 1173 K. Crosses are observed intensities, the solid line overlying them is the calculated intensity, and Δy_i is the difference between observed and calculated intensities. The short vertical lines mark the positions of possible Bragg peaks of the RhNbO₄ compound. The observed XRD pattern contains the RhNbO₄ compound almost exclusively with a little of the Rh₂O₃ phase. Figure 2 shows that the calculated pattern fits the observed one well. The tetragonal lattice parameters of the RhNbO₄ compound were refined to be a = 4.708 Å, c = 3.017 Å. This result is also in reasonable agreement with those of RhNbO₄ powders (a = 4.685 Å, c = 2.980 Å) by Shaplygin *et al.* (37).

In catalyst C, the silica support precalcined at 1173 K was used and calcined finally at the same temperature after its preparation. The XRD patterns of catalyst C are shown in Fig. 3 (No. 1). All the diffraction peaks correspond to the RhNbO₄ phase, except for a small peak due to the Rh₂O₃ phase. No peaks corresponding to the Nb₂O₅ oxide are observed. The pattern is in good agreement with that of catalyst B calcined at 1173 K (Fig. 1, No. 4). Therefore, the RhNbO₄ compound has been formed almost exclusively on the SiO₂ surface by the high-temperature calcination at 1173 K. After the H₂ reduction at 473 K, the small Rh₂O₃ peak disappeared with the appearance of a small Rh metal peak (No. 2).

The structure changes of the RhNbO₄ phase are presented by XRD patterns in Fig. 4 after H₂ or O₂ treatments. Curve 1 is the XRD pattern of catalyst C after H₂ reduction at 773 K, where the diffraction

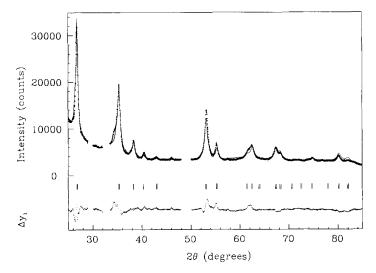


Fig. 2. Rietveld refinement patterns for the RhNbO₄ compound in catalyst B after being calcined at 1173 K.

peaks of the RhNbO₄ phase disappeared, and only the main diffraction peak (111) of the Rh metal appeared, but almost no other peaks of the Rh phase were observed. A small peak around 26.0° was observed, and its d spacing value (3.421 Å) is the same as that of the most intensive diffraction line (400) of the NbO₂ phase (3.42 Å). This diffraction peak can be distinguished signifi-

Fig. 3. X-ray diffraction patterns of catalyst C. (1) Catalyst C (calcined in air at 1173 K). (2) After step 1, the catalyst was reduced in $\rm H_2$ at 473 K.

cantly from the most intensive (110) peak of RhNbO₄ (3.321 Å) or other phases such as Nb₂O₅, Rh₂O₃, etc. After catalyst C was

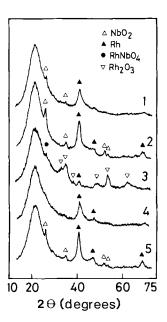


FIG. 4. X-ray diffraction patterns of catalyst C after being treated in H_2 or O_2 . (1) Catalyst C reduced in H_2 at 773 K. (2) After step 1, the catalyst was treated in He at 973 K. (3) After step 1, the catalyst was calcined in air at 773 K. (4) After step 3, the catalyst was reduced in H_2 at 773 K. (5) After step 4, the catalyst was treated in He at 973 K.

calcined in He at 973 K following reduction at 773 K, the diffraction pattern of this phase became more clear (No. 2). A best-fit was obtained if we calculate the d spacing values by assuming the tetragonal NbO₂ structure (a = 13.71 Å, c = 5.985 Å). We can thus conclude that the RhNbO₄ compound is reduced to the Rh metal, accompanied with the formation of reduced niobia species (NbO₂).

O₂ treatment at 773 K has always been used to restore the normal state from SMSI. The XRD pattern after calcination in air at 773 K is shown in No. 3. The main peaks correspond to the Rh₂O₃ phase. The diffraction peaks of the NbO₂ phase disappeared, probably as a consequence of oxidation to Nb₂O₅. A small diffraction peak of the Rh metal was still observed (No. 3). It indicates that the calcination treatment at 773 K is not sufficient to oxidize the Rh particles completely.

High-temperature reduction treatment can induce SMSI again after restoration by O2 treatment. The XRD pattern after the HTR treatment at 773 K is shown in Fig. 4 (No. 4). Only the Rh phase was observed. The XRD pattern is similar to that after the first HTR treatment (No. 1), except for the absence of the NbO₂ diffraction peak at 26°. XRD pattern No. 5 was obtained after thermal treatment in He at 973 K following the second HTR treatment. The diffraction peaks of the Rh metal became sharper, indicating some agglomeration of Rh particles during the He treatment at 973 K. The diffraction peaks of NbO₂ were also observed in pattern No. 5, although the intensity was less than that in pattern No. 2. It should be pointed out that no NbO₂ phase was observed even after the same He thermal treatment when the catalyst was reduced at 473 K. Therefore, it can be considered that He treatment at 973 K mainly caused the highly dispersed NbO₂ to agglomerate to large crystallines.

X-ray photoelectron spectroscopy was used to characterize the Rh catalysts in the oxidized state. The binding energies of Rh

 $3d_{5/2}$ are presented in Table 2. For the nonpromoted Rh/SiO₂ catalyst which was calcined in air at 973 K, the Rh $3d_{5/2}$ binding energy is 308.1 eV. In catalyst C calcined at 1173 K, the Rh $3d_{5/2}$ binding energy is 309.1 eV. From the results of X-ray diffraction, the main phase is Rh₂O₃ in the nonpromoted Rh catalyst, and RhNbO₄ in catalyst C after these treatments. It can thus be concluded that the Rh $3d_{5/2}$ binding energies are 308.1 eV for Rh₂O₃ and 309.1 eV for RhNbO₄ particles on the SiO₂ surface. Therefore, the formation of mixed oxide with Nb₂O₅ induces a shift in the Rh $3d_{5/2}$ binding energies to the higher energy side. After the RhNbO₄ has been once reduced and then treated in O₂ at 773 K, the observed Rh $3d_{5/2}$ binding energy is 308.2 eV, which coincides quite well with that in the Rh₂O₃ phase. The results should be compared with the observation by X-ray diffraction which shows the coexistence of Rh₂O₃ and Rh as the main phases. However, no Rh metal was detected by XPS. This difference between XRD and XPS leads to the interpretation that the O₂ treatment at 773 K causes the oxidation of the outer layer of the Rh particles to Rh₂O₃, with the Rh core still unchanged. For catalyst B, which was calcined in air at 973 K, the observed Rh $3d_{5/2}$ binding energy is 308.9 eV, in reasonable agreement with that of the RhNbO₄ compound. However, the result of X-ray diffraction shows that the catalyst contains two kind of rhodium:

TABLE 2
Binding Energies of Rh 3d_{5/2} in Nb₂O₅-Promoted
Rh Catalysts

Catalyst	Calcination temperature (K)	Binding energy of Rh $3d_{5/2}$ (eV)	
Catalyst C	1173	309.1	
Catalyst Ca	773	308.2	
Catalyst B	973	308.9	
5 wt% Rh/SiO ₂	973	308.1	

[&]quot; After catalyst C had been reduced in H_2 at 773 K, it was calcined in O_2 at 773 K.

Rh₂O₃ and RhNbO₄. No significant contribution of Rh₂O₃ was observed by XPS. This can lead to the interpretation that calcination results in the formation of the RhNbO₄ compound on the surface layer of Rh₂O₃ particles.

Temperature-programmed reduction was used to study the interaction between rhodium and the niobia promoter in the oxide state. Figure 5 shows the TPR spectra of catalyst C. By calcination in air at 1173 K, the reduction peak shifted significantly to the higher temperature side (Fig. 5, No. 1), considering that the observed reduction temperature of Rh₂O₃ was about 350 K for the nonpromoted Rh/SiO₂ catalysts (32). The H₂ consumption has a maximum around 800 K. A small reduction peak around 440 K was also observed at the lower temperature side. The calcination of the catalyst in O₂ at 773 K after H₂ reduction at 773 K gives the TPR profile No. 2 shown in Fig. 5. H₂ consumption is observed mainly around 350-580 K, with a broad tail up to 870 K. As also discussed in a previous paper (32), the reduction peak at higher temperatures (about 800 K) can be attributed to the crystallized RhNbO₄ compound (No. 1). Thus, the H₂ consumption at the tailing part to 873 K in profile No. 2 may correspond to the reduction of the RhNbO₄ precursor (surface compound) (32). The H₂ consumption at the lower temperature side is due to the reduction of Rh₂O₃ oxide, although its reduction temperature could have shifted to higher temperatures by interaction with the Nb₂O₅ pro-

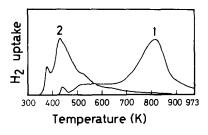


FIG. 5. TPR spectra of catalyst C. (1) Catalyst C calcined in air at 1173 K. (2) Following the H₂ reduction at 773 K, catalyst C was calcined in O₂ at 773 K.

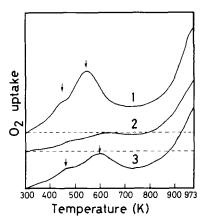


FIG. 6. TPO spectra of catalyst C. (1) Catalyst C after being reduced in H_2 at 773 K. (2) Following H_2 reduction at 773 K, catalyst C was calcined in O_2 at 773 K and reduced in H_2 at 473 K. (3) Following H_2 reduction at 773 K, catalyst C was calcined in O_2 at 773 K and reduced again in H_2 at 773 K.

moter. The XRD results also support such interpretations, in which the main phase is assigned to $RhNbO_4$ in TPR profile No. 1, and to Rh_2O_3 in TPR profile No. 2.

In order to obtain more information about the structure of the reduced niobia species, temperature-programmed oxidation spectra were measured. The TPO profile of catalyst C (RhNbO₄/SiO₂) after reduction at 773 K is presented in Fig. 6 (No. 1). The O_2 consumption has a maximum around 540 K and another maximum at temperatures higher than 973 K. Because of the large Rh particle size of the catalyst and the low O_2 concentration (0.105% O_2) used in TPO measurements, higher temperatures are needed for complete oxidation. The O_2 consumption peak at the higher temperature side can be considered the oxidation of the bulk Rh metal. The RhNbO₄ compound was reduced in H₂ at 773 K and then calcined in O₂ at 773 K. The TPO profile No. 2 is observed as shown in Fig. 6, after the H₂ reduction at 473 K for this catalyst. The O₂ consumption peak at the higher temperature side remained almost unchanged, but the amount of O₂ consumption at the lower temperature side decreased substantially. In Fig. 6 (No. 3), the TPO

profile is presented after the second HTR treatment at 773 K. The O_2 consumption increased at the lower temperature side, compared with No. 2. In contrast to the first HTR (Fig. 6, No. 1), however, a significant decrease was observed in the amount of O_2 consumption at the lower temperature side. As will be discussed later, the oxidation peak at the lower temperature side can be attributed to the oxidation of the reduced niobia species.

O₂ consumption was studied by a static vacuum system to estimate the amount of reduced niobia species. For the complete oxidation of Rh metal,

$$2 Rh + \frac{3}{2}O_2 \rightarrow Rh_2O_3$$

the amount of O₂ consumption is 1.5 in O/Rh value. For the Nb₂O₅-promoted Rh/SiO₂ catalysts evacuated at high temperature (773 K) after reduction, oxygen is consumed mainly for the oxidation of Rh metal and reduced niobia species. The part of O₂ consumption exceeding 1.5 in O/Rh value should be attributed to the oxidation of reduced niobia species.

The results are presented in O/Rh values in Table 3. In the second column are shown

TABLE 3

Amount of O₂ Consumption for Nb₂O₅-Promoted Rh Catalyst

Catalyst	O_2 consumption (O/Rh)" after H_2 treatments at varying temperatures					
	(1) 1st HTR	(2) 473 K	(3) 573 K	(4) 2nd HTR		
Catalyst A ^b	1.60	1.45		1.59		
Catalyst C ^c	2.02	1.42	1.50	1.66		
Catalyst C ^b	1.91	1.12	1.31	1.56		

 $[^]a$ The $\rm O_2$ consumption measurements were made according to the following sequence: (1) 1st HTR at 773 K, (2) H₂ reduction at 473 K, (3) H₂ reduction at 573 K, and (4) 2nd HTR at 773 K.

the values of O₂ consumption after the H₂ reduction at 473 K for the catalyst which experienced first HTR followed by oxidation at 773 or 873 K. For catalyst A, the amount of O₂ consumption is 1.45 in O/Rh value after H₂ reduction at 473 K. This value is in reasonable agreement with that for complete oxidation of the Rh metal. In catalyst C, the amount of O₂ consumed during the thermal treatment at 773 K is 1.12 in O/Rh value after H₂ reduction at 473 K. When the thermal treatment was carried out in O₂ at 873 K, the observed O₂ consumption increased to 1.42 in O/Rh value. The above results suggest that the thermal treatment at 773 K is sufficient to oxidize Rh particles in catalyst A, but a higher temperature (873 K) is needed for catalyst C.

After the first HTR treatment at 773 K, the amount of O₂ consumed by catalyst A is 1.60 in O/Rh value. It implies that some reduced niobia species have been formed with the amount of about 0.1 in O/Rh value. Almost the same O₂ consumption was observed after the first and the second HTR treatment at 773 K in catalyst A.

For catalyst C, the data for both thermal treatments at 773 and 873 K are presented in Table 3 for comparison. In all'cases, the O₂ consumption values during thermal treatment at 773 K are less than those at 873 K. As discussed above, it is more appropriate to estimate the amount of reduced niobia species from the data at 873 K. The amount of O₂ consumption is 2.02 in O/Rh value after the first HTR at 773 K. This value is significantly higher than those of any of the successive reduction treatments. The result indicates that some irreversible change occurred in catalyst C. Following the first HTR at 773 K, the O₂ consumption is 1.42 after H₂ reduction at 473 K. This value increased to 1.66 after the second HTR at 773 K. The O₂ consumption increased with increasing catalyst reduction temperature, implying that more Nb₂O₅ promoter was reduced by H₂ reduction at a higher temperature. The amount of reduced niobia species was about 0.52 in O/Rh value

 $^{^{\}it h}$ The amount of ${\rm O_2}$ consumed during thermal treatment at 773 K.

 $^{^{\}rm c}$ The ${\rm O}_2$ consumption during thermal treatment at 873 K.

after the first HTR at 773 K, but decreased to 0.16 after the second HTR at the same temperature. It should be pointed out that no significant O₂ consumption was observed in the Nb₂O₅/SiO₂ catalyst system after the same HTR treatment.

DISCUSSION

In Nb₂O₅-promoted Rh/SiO₂ catalysts, the migration behaviors of Rh and Nb₂O₅ particles depend on the calcination temperatures of the impregnated precursors on the silica surface. From the results obtained by X-ray diffraction (Fig. 1), the structure of the Nb₂O₅-promoted Rh/SiO₂ catalysts calcined at different temperatures can be described by a model as shown in Fig. 7.

During calcination at 773 K, the precursors decompose to rhodium and niobium oxides. The Nb₂O₅ is well dispersed, and most of the niobia particles may be located apart from Rh₂O₃ particles on the silica surface (catalyst A). Most of such separated niobia particles are hardly reduced even by HTR treatment. Those Nb₂O₅ promoter particles which are present in the vicinity of rhodium particles may be reduced in HTR

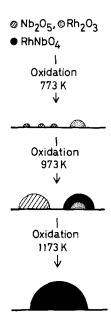


Fig. 7. Model for the formation of the RhNbO₄ compound during the calcination process.

treatment. However, the amount is limited (0.1 in O/Rh value). The reduced niobia species block some of the surface Rh atoms to cause the decrease in H₂ chemisorption capacity, but not sufficiently to induce strong Rh-Nb₂O₅ interaction, since no significant suppression was observed in the catalytic activity for the ethane hydrogenolysis reaction.

The particles of rhodium and niobium oxide are movable during calcination at higher temperatures. The calcination treatment at 973 K leads to a formation of three phases (Nb₂O₅, Rh₂O₃, and RhNbO₄) on the silica surface. During the calcination process, some of the Nb₂O₅ particles migrate toward the Rh₂O₃ particles and form a surface layer of RhNbO₄ compound on them. The other Nb₂O₅ particles agglomerated to larger ones (catalyst B) to form crystalline Nb₂O₅. In this catalyst, the significant SMSI effects (H/Rh diminished to zero and ethane hydrogenolysis activity suppressed by ca. 3.5 orders of magnitude) were observed after HTR treatment. The reduced niobia species may be formed from reduction of the RhNbO₄ compound (32, 33). However, those Nb₂O₅ particles which are located apart from the rhodium particles would not be reduced even by HTR treatment at 773 K. In practice, no reduction of Nb₂O₅ oxide was observed by X-ray diffraction (Fig. 1, No. 3). The results indicate that the niobia species with its amount less than that of the total Rh atoms is sufficient to induce strong Rh-Nb₂O₅ interaction.

During high-temperature calcination at 1173 K, the larger particles of Nb₂O₅ and Rh₂O₃ are also movable. As a consequence of the reaction between rhodium and niobium oxide, almost a single phase of RhNbO₄ was formed on the silica surface, accompanied by the disappearance of the Nb₂O₅ and Rh₂O₃ phases (catalyst C and catalyst B calcined at 1173 K). The high-temperature calcination caused significant sintering of particles, as indicated by the sharp diffraction peaks of the RhNbO₄ compound.

In catalyst C, the RhNbO₄ compound was formed almost exclusively on the silica surface. As indicated by the TPR spectra, the RhNbO₄ compound was reduced at much higher temperatures compared with Rh₂O₃. This compound can be reduced completely by HTR at 773 K. Significant SMSI effects were observed in this RhNbO₄/SiO₂ catalyst. After HTR treatment at 773 K, the capacity of H₂ chemisorption diminished to zero, and the catalytic activity for ethane hydrogenolysis was suppressed by ca. 3.5 orders of magnitude compared with that after the following LTR treatment (39). From the comparison of catalyst A with catalyst B or C, severe suppression of catalytic activity for ethane hydrogenolysis was observed only after the H/Rh value diminished almost to zero (32). The results suggest that a nearly complete blockage of the Rh surface is required for a large SMSI effect.

This RhNbO₄/SiO₂ catalyst system was used to characterize the Rh-Nb₂O₅ interaction. After the first HTR treatment at 773 K, the NbO₂ phase was identified by X-ray diffraction (Fig. 4, Nos. 1 and 2). The results indicate clearly that NbO₂ is a reduction product of the RhNbO₄ compound. The amount of O₂ consumed by the oxidation of the reduced niobia species is 0.52 in O/Rh value after HTR treatment of the RhNbO₄/SiO₂ catalyst at 773 K. This amount is in good agreement with 0.5 in O/Rh value which is predicted from the oxidation of NbO₂ to Nb₂O₅,

$$2NbO_2 + \frac{1}{2}O_2 \rightarrow Nb_2O_5$$
.

Therefore, the stoichiometry of the reduction of the RhNbO₄ compound by H₂ can be written as

$$RhNbO_4 + 2H_2 \rightarrow Rh + NbO_2 + 2H_2O$$
.

The RhNbO₄ compound is reduced easily in comparison with Nb₂O₅. In catalyst B, no reduction of those Nb₂O₅ particles was observed even after the same HTR treatment, as indicated by X-ray diffraction (Fig. 1, No. 3). Since significant SMSI ef-

fects were observed in this RhNbO₄/SiO₂ catalyst after H₂ reduction at 773 K (HTR), the NbO₂ species thus formed should block surface Rh atoms to induce strong Rh-Nb₂O₅ interaction.

The diffraction pattern of the Rh metal formed by HTR of catalyst C is also anomalous in comparison with the nonpromoted Rh/SiO₂ catalyst. Only the main peak of (111) line appeared in the XRD pattern, with almost no observed diffraction corresponding to (200) and (220) lines. For the nonpromoted Rh/SiO₂ catalyst, the intensities of (200) and (220) lines were about 40 and 30% of the (111) line (32). Thus, we can assume that the Rh particles formed by reduction of RhNbO₄ exist in a needle shape oriented mainly in the $\langle 111 \rangle$ direction (38). The morphology change may be attributed to the strong interaction between rhodium and the niobia promoter.

After the RhNbO₄ compound was reduced, O₂ treatment at 773 K oxidized completely the reduced niobia species to Nb₂O₅. For the Rh particles, the surface layer is oxidized to Rh₂O₃, with the Rh core unchanged during this treatment. To obtain more precise information about the structure of this catalyst, the XRD pattern was recorded by a step-scan mode. As shown in Fig. 8, the diffraction lines of Rh₂O₃ and Rh became clear. In addition, a small peak, which can be attributed to the most intensive diffraction of the RhNbO₄ phase, was also observed. It suggests that some surface precursor of RhNbO₄ can be formed, although the O₂ treatment at 773 K is not sufficient to induce the bulk reaction between rhodium and the niobia promoter. This result is also in agreement with that obtained from TPR studies.

After the second HTR treatment at 773 K, significant SMSI effects were also observed in H₂ chemisorption and the ethane hydrogenolysis reaction. As a part of the niobia promoter would be present in the vicinity of rhodium particles, the reduction of such niobium oxide may be catalyzed by the rhodium particles. Therefore, the re-

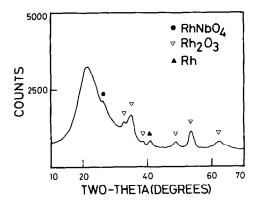


FIG. 8. X-ray diffraction pattern of catalyst C after being reduced in H_2 at 773 K and calcined in O_2 at 773 K. Step scan (step scan of 0.04° , present time of 20 s) was used.

duced niobia species can be formed from the reduction of the surface precursor of the RhNbO₄ compound and some of the Nb₂O₅ oxide in the vicinity of Rh particles. The formation of NbO₂ species was also confirmed by X-ray diffraction (Fig. 4, No. 5). The amount is about 0.16 in O/Rh value according to the O₂ consumption measurement. This value is significantly lower than that after the first HTR treatment. The result indicates again that the RhNbO₄ compound is reduced easily in comparison with the Nb₂O₅ particle, even though the reduction of a part of the latter can also be promoted by rhodium particles in the vicinity.

TPO measurements showed significant O₂ consumption at the higher temperature side after H₂ reduction either at 773 K or at 473 K (Fig. 6). However, the amount of O₂ consumption at the lower temperature side changed greatly with the reduction temperature and procedure. The amount of this peak decreases in the following order: first $HTR > second HTR > H_2 reduction at 473$ K. This trend is in good agreement with that obtained by the O2 consumption measurements in a vacuum system. As most of the rhodium oxide should be reduced after H₂ reduction at 473 K, the excess amount of the O₂ consumption at the lower temperature side should thus be attributed to the oxidation of the NbO₂ species formed in the

HTR treatment. It should be pointed out that two maxima (453 and 540 K) were observed in the oxidation peak at the lower temperature side, sugessting that two kinds of NbO₂ species exist in this Nb₂O₅-promoted Rh/SiO₂ catalyst system after HTR treatment. We can speculate that O₂ consumption around 453 K may be attributed to oxidation of the NbO₂ species on the Rh particles, and that the peak around 540 K may be attributed to the reduced niobia species on the support. This subject will be discussed in our next paper (40).

The entire results given above can be rationalized by the model in Fig. 9 which represents the structure change of the RhNbO₄/SiO₂ catalyst under thermal treatment in H₂ or O₂, as follows.

As the catalyst was synthesized through high-temperature calcination, the RhNbO₄ compound was well crystallized. The mean particle size is 139 Å according to the Scherrer formula of X-ray diffraction. The RhNbO₄ compound cannot be reduced in H₂ at temperatures lower than 473 K. After HTR treatment at 773 K, the RhNbO₄ compound was reduced to Rh and NbO₂. At the

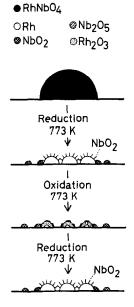


FIG. 9. Structure changes of the RhNbO₄ particle during treatment in H₂ or O₂.

same time, the large RhNbO₄ particle split into a number of smaller Rh particles. The mean size of the thus-formed Rh particles is 48 Å according to X-ray diffraction. During the following O₂ treatment at 773 K, NbO₂ is oxidized to Nb₂O₅. For the Rh particles, only the surface layer is oxidized to Rh₂O₃, with the Rh core remaining unchanged. Some surface precursor of the RhNbO₄ compound is also formed at the same time. After the second HTR treatment at 773 K, Rh₂O₃ and the RhNbO₄ precursor is reduced to form Rh particles with surfaces covered with the NbO₂ species. Some of the Nb₂O₅ promoter in the vicinity of Rh particles may also be reduced to NbO₂ during this treatment. For the two kinds of SMSI states of the Nb₂O₅-promoted Rh catalyst after the first and second HTR treatment (Fig. 9), the same extent of Rh-Nb₂O₅ interaction was observed in the H2 chemisorption and in the ethane hydrogenolysis reaction (39). However, the amount of the NbO₂ species is substantially different between the two states. This means that only a restricted amount of the reduced species, as suggested by the decoration model, is necessary for the strong Rh-Nb₂O₅ interaction.

CONCLUSIONS

- 1. The single phase of the RhNbO₄ compound was formed on a silica surface through high-temperature calcination at 1173 K. This RhNbO₄ compound remained unchanged in H₂ at 473 K, but was reduced to Rh and NbO₂ during HTR treatment at 773 K.
- 2. The RhNbO₄/SiO₂ catalyst, once it was decomposed by HTR treatment, exhibits significant SMSI behaviors: H₂ chemisorption capacity and activity of the ethane hydrogenolysis were suppressed severely by HTR and recovered after O₂ treatment at 673 K followed by LTR treatment.
- 3. NbO₂ species was formed in the Nb₂O₅-promoted Rh/SiO₂ catalyst after HTR treatment. It may be this NbO₂ spe-

cies which blocked the Rh surface, inducing the SMSI phenomena.

4. Rh redispersion occurred in the reduction process of the RhNbO₄ compound. The well-crystallized RhNbO₄ particle (139 Å) split into smaller Rh particles (48 Å) during HTR treatment.

ACKNOWLEDGMENTS

One of the authors (Z. Hu) thanks Tianjin University, China. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

REFERENCES

- Tauster, S. J., Fung, S. C., Baker, R. T. K., and Hoursely, J. A., Science 211, 1121 (1981).
- Haller, G. L., Henrich, V. E., McMillan, M., Resasco, D. E., Sadeghi, H. R., and Sakellson, S., in "Proceedings, 8th International Congress on Catalysis, Berlin, 1984," Vol. 5, p. 135. Dechema, Frankfurt-am-Main, 1984.
- Van Den Berg, F. G. A., Glezer, J. H. E., and Sachtler, W. M. H., J. Catal. 93, 340 (1985).
- Lin, Y.-J., Resasco, D. E., and Haller, G. L., J. Chem. Soc. Faraday Trans. 1 83, 2091 (1987).
- Wilson, T. P., Kasai, P. H., and Ellg, P. C., J. Catal. 69, 193 (1981).
- Niemansverdriet, J. W., Van der Kraan, A. M., Van Loef, J. J., and Delgass, W. N., J. Phys. Chem. 87, 1292 (1983).
- Rieck, J. S., and Bell, A. T., J. Catal. 99, 262 (1986).
- Ichikawa, M., Fukushima, T., and Shikakura, K., in "Proceedings, 8th International Congress on Catalysis, Berlin, 1984," Vol. 2, p. 69. Dechema, Frankfurt-am-Main, 1984.
- 9. Vannice, M. A., J. Catal. 74, 199 (1982).
- Vannice, M. A., and Sudhaker, C., J. Phys. Chem. 88, 2429 (1984).
- Kunimori, K., Abe, H., Yamaguchi, E., Matsui, S., and Uchijima, T., in "Proceedings, 8th International Congress on Catalysis, Berlin, 1984," Vol. 5, p. 251. Dechema, Frankfurt-am-Main, 1984.
- Singh, A. K., Pande, N. K., and Bell, A. T., J. Catal. 94, 422 (1985).
- Ko, E. I., Bafrali, R., Nuhfer, N. T., and Wanger, N. J., J. Catal. 95, 260 (1985).
- Kunimori, K., Doi, Y., Ito, K., and Uchijima, T.,
 J. Chem. Soc. Chem. Commun., 966 (1986).
- 15. Solymosi, F., Catal. Rev. 1, 233 (1967).
- Schwab, G. M., in "Advances in Catalysis"
 (D. D. Eley, P. W. Selwood, and Paul B. Weisz,

- Eds.), Vol. 27, p. 1. Academic Press, New York, 1978.
- Tauster, S. J., Fung, S. C., and Garten, R. L., J. Amer. Chem. Soc. 100, 170 (1978).
- Tauster, S. J., and Fung, S. C., J. Catal. 55, 29 (1978).
- Santos, J., Phillips, J., and Dumesic, J. A., J. Catal. 81, 147 (1983).
- Resasco, D. E., and Haller, G. L., J. Catal. 82, 279 (1983).
- Sadeghi, H. R., and Henrich, V. E., J. Catal. 87, 279 (1984).
- Belton, D. N., Sun, Y.-M., and White, J. M., J. Phys. Chem. 88, 5172 (1984).
- Simoens, A. J., Baker, R. T. K., Dwyer, D. J., and Lund, C. R. F., and Madon, R. J., *J. Catal.* 86, 359 (1984).
- 24. Chung, Y.-W., Xiong, G., and Kao, C. C., J. Catal. 85, 237 (1984).
- 25. Takatani, S., and Chung, Y.-W., J. Catal. 90, 75 (1984).
- Belton, D. N., Sun, Y.-M., and White, J. M. J. Amer. Chem. Soc. 106, 3059 (1984).
- 27. Ko, C. S., and Gorte, R. J., J. Catal. 90, 59 (1984).
- Raupp, G. P., and Dumesic, J. A., J. Catal. 95, 587 (1985).
- Mcviker, G. B., and Ziemiak, J. J., J. Catal. 95, 473 (1985).

- 30. Haller, G. L., and Resasco, D. E., to be published.
- Kip, B. J., Smeets, P. A. T., Van Wolput, J. H.
 M. C., Zandbergam, H. W., Van Grondelle, J.,
 and Prins, R., Appl. Catal. 33, 157 (1987).
- Hu, Z., Nakamura, H., Kunimori, K., Asano, H., and Uchijima, T., J. Catal. 112, 478 (1988).
- Kunimori, K., Hu, Z., Ito, K., Maeda, A., Nakamura, H., and Uchijima, T., Shokubai [catalyst]
 106 (1987); 59th CATSJ Meeting Abstracts, No. A16 (1987).
- Murakami, Y., in "Preparation of Catalyst" (G. Poncelet, P. Grange, and P. A. Jacobs, Eds.), p. 775. Elsevier, Amsterdam, 1983.
- Kunimori, K., Ikeda, Y., Soma, M., and Uchijima, T., J. Catal. 79, 185 (1983).
- K. Kunimori, K. Ito, K. Iwai, and T. Uchijima, *Chem. Lett.*, 573 (1986).
- Shaplygin, I. S., Prosychev, I. I., and Lazarev, V.
 B., Russ. J. Inorg. Chem. Eng. Transl. 23, 773 (1978).
- Yates, D. J. C., and Prestridge, E. B., J. Catal. 106, 549 (1987).
- Hu, Z., Nakamura, H., Kunimori, K., and Uchijima, T., Catal. Lett. 1, 271 (1988).
- Hu, Z., Kunimori, K., and Uchijima, T., to be published.